


## Sustainable Potatoes 2024 – Today's Topics

- What Does "Sustainable" Mean?
- Where Have We Been? Where Are We Going?
- What I've Learned in 30 Years
  - Water Management is Everything !!!
  - 2. Pay Attention to Your Soil Sample Case Study
  - 3. Plant Health = Direct Relationship with Nutrition
  - 4. All Fertilizers Are Not Created Equal (Baggage/Solubility)
    - Carbon Complexed Nutrients are for Real
  - 5. Manures How Can They Help?
- Biology: How to Make Sense of it All...

### Sustainable Potatoes in 2024

#### What Is Sustainability?

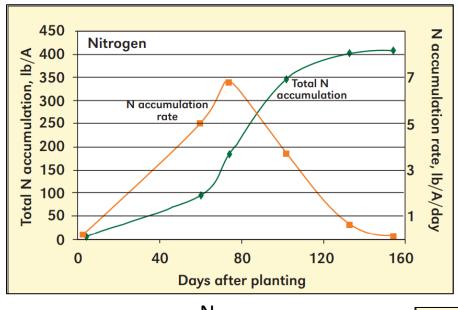
In the broadest sense, sustainability refers to the ability to maintain or support a process continuously over time. In business and policy contexts, sustainability seeks to prevent the depletion of natural or physical resources, so that they will remain available for the long term.

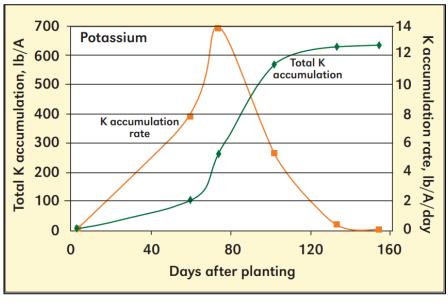
#### KEY TAKEAWAYS

- Sustainability is ability to maintain or support a process over time.
- Sustainability is often broken into three core concepts: economic, environmental, and social.

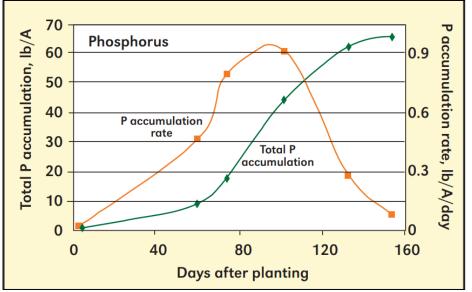
# Our Tools Are Changing




| Where Have We Been ? – Old School | Where Are We Going? – New School |
|-----------------------------------|----------------------------------|
| Fumigation                        | Fumigation ???                   |
| Excessive Tillage ?               | Improved Tillage Equipment       |
| Full Coverage Chemistry           | Pest Specific Chemistry          |
| Temik                             | Neonics ??                       |
| Monitor                           | Fertilizer Technology            |
| Neonics                           | Manures /Compost                 |
| Synthetic Fertilizers             | Irrigation Technologies          |
| Heavy Pre-Plant Applications      | Tissue/Soil Analysis             |
| Raw Manures                       | More Targeted Applications       |
|                                   | Better Information               |
|                                   |                                  |
|                                   |                                  |


### Water is a **BIG** Deal

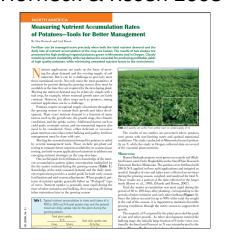
- 24 inches of water = 5.2 million pounds
- All other crop inputs = < 50,000 pounds




### Nutrient Demand in Potatoes






N



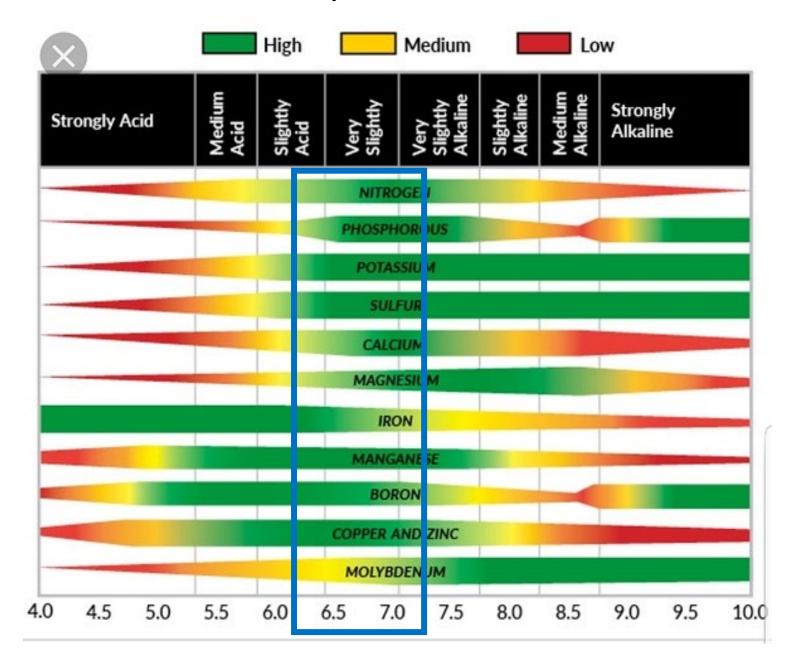
Р

k

#### Horneck & Rosen 2008

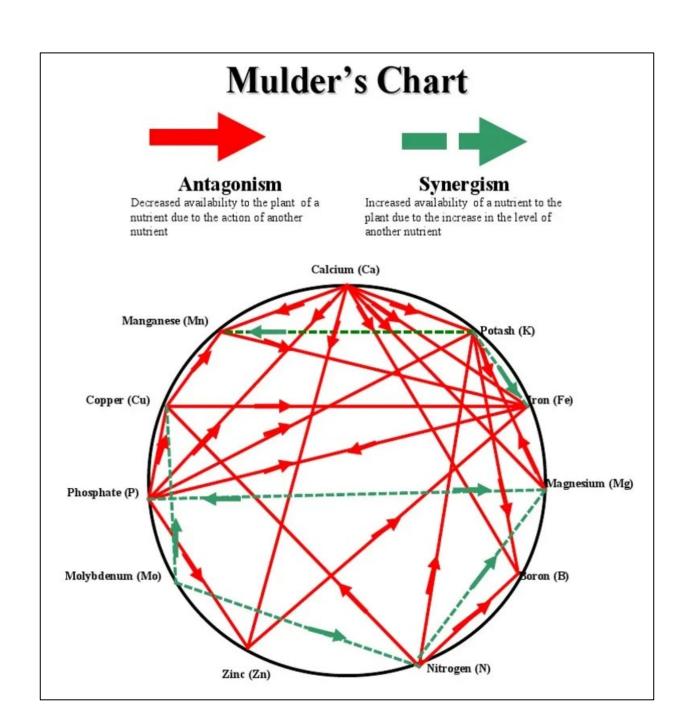


## CY24 Spud Field Soil Sample

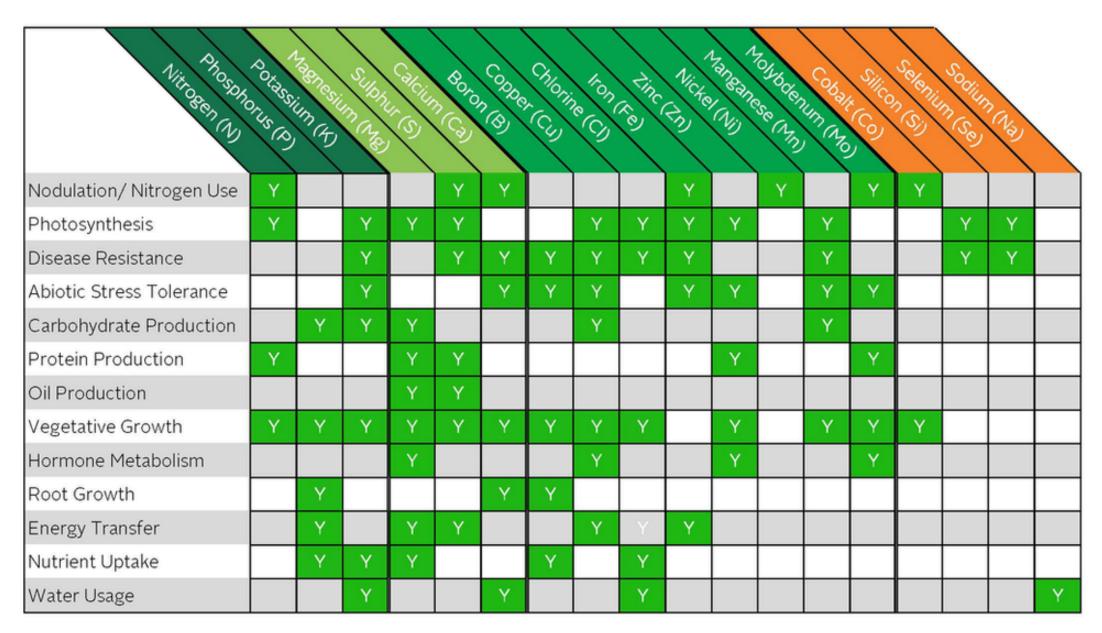

- pH
- Base Distribution/Saturation
- CEC

- Bulk Density
- PPM <u>or</u> lbs/acre foot

Should I Lime ??


| •                                               |                              | NOON                |                        | NULLANI                          | I                                | 0040                          |                      |                         |
|-------------------------------------------------|------------------------------|---------------------|------------------------|----------------------------------|----------------------------------|-------------------------------|----------------------|-------------------------|
| NUTRIENTS                                       | Soil Bulk Density            | NO3N<br>(1N KCI)    | NO3N                   | NH4N<br>(1N KCI)                 | NH4N                             | SO4S<br>(DTPA-Sorb.)          | SO₄S                 | Avail. H <sub>2</sub> O |
| Depth (inches)                                  | million lbs/acre-depth       | ppm (mg/kg)         | lbs/acre-depth         | ppm (mg/kg)                      | lbs/acre-depth                   | ppm (mg/kg)                   | lbs/acre-depth       | inches/depth            |
| 0/12                                            | 4.30                         | 12.2                | 52                     | 1.1                              | 5                                | 9                             | 39                   |                         |
|                                                 |                              |                     |                        |                                  |                                  |                               |                      |                         |
|                                                 | -                            |                     |                        |                                  |                                  |                               |                      |                         |
|                                                 | J<br>Total (sum of d         | epths) lbs/acre     | 52                     |                                  | 5                                |                               | 39                   |                         |
| Estimated N Release from Organic Matter (ENROM) |                              | 52                  |                        |                                  | Total Available                  | e Moisture =                  |                      |                         |
| Sum of Available N (NO3N + NH4N + ENROM)        |                              |                     | 109                    | Available Moisture % 1st Depth = |                                  |                               |                      |                         |
| 1st depth results                               | Extraction Method            |                     | ppm (mg/kg)            | lbs/acre-depth                   |                                  | Interpr                       | etation (1st         | depth)                  |
| Phosphorus, Olsen                               | (0.5N NaHCO <sub>3</sub> )   | (PO <sub>4</sub> P) | 25                     | 246                              | $(P_2O_5)$                       | Medium High                   |                      |                         |
| Phosphorus, Bray P1                             | (NH₄F, HCI)                  | (PO <sub>4</sub> P) |                        |                                  | (P <sub>2</sub> O <sub>5</sub> ) |                               |                      |                         |
| Phosphorus, Bray P2                             | (NH <sub>4</sub> F, HCl x 4) | (PO <sub>4</sub> P) |                        |                                  | (P <sub>2</sub> O <sub>5</sub> ) |                               |                      |                         |
| Potassium, Olsen                                | (0.5N NaHCO3)                | (K)                 | 137                    | 710                              | (K <sub>2</sub> O)               | Medium                        |                      |                         |
| Boron                                           | (DTPA-Sorb)                  | (B)                 | 0.3                    | 1.3                              | (B)                              | Low                           |                      |                         |
| Zinc                                            | (DTPA-Sorb)                  | (Zn)                | 1.9                    | 8.1                              | (Zn)                             | Medium High                   |                      |                         |
| Manganese                                       | (DTPA-Sorb)                  | (Mn)                | 1.8                    | 7.7                              | (Mn)                             | Low                           |                      |                         |
| Copper                                          | (DTPA-Sorb)                  | (Cu)                | 1.1                    | 4.7                              | (Cu)                             | Medium                        |                      |                         |
| Iron                                            | (DTPA-Sorb)                  | (Fe)                | 78                     | 335                              | (Fe)                             | Very High                     | _                    |                         |
| Molybdenum                                      | (DTPA-Sorb)                  | (Mo)                | 0.008                  | 0                                | (Mo)                             | Very Low                      | ]                    |                         |
| Aluminum                                        | (DTPA-Sorb)                  | (AI)                |                        |                                  | (AI)                             |                               | _                    |                         |
| Aluminum                                        | (1N KCI)                     | (AI)                |                        |                                  | (AI)                             |                               |                      |                         |
| Chloride                                        | (ISE Buffer)                 | (Cl <sup>-</sup> )  |                        |                                  | (Cl <sup>-</sup> )               |                               |                      |                         |
| SOIL CHARACTERIST                               | rics                         | 1st Depth           | 2nd Depth              | 3rd Depth                        | 4th Depth                        | th Interpretation (1st depth) |                      | depth)                  |
| pН                                              |                              | 6.03                |                        |                                  |                                  | Slightly Acidic               |                      |                         |
| Electrical Cond. (                              | (EC 1:1) (dS/m)              | 0.24                |                        |                                  |                                  |                               |                      |                         |
| ~ Soluble Salts (Sat                            | t. Paste) (dS/m)             | 0.62                |                        |                                  |                                  | Negligible salt               | effects              |                         |
| Organic Matter % (Walkley-Black) 1.30           |                              | 1.30                |                        |                                  |                                  | Medium Low                    |                      |                         |
| Effervescence                                   | (Scale = 0 to 7)             | 0                   |                        |                                  |                                  | Very Low                      |                      |                         |
| %Lime (Calcium Carbona                          | . ,,                         |                     |                        |                                  |                                  |                               |                      |                         |
| EXCHANGEABLE BASES % of Total                   |                              | % of CEC            | Quantities of Exchange |                                  | eable Bases                      | Buffer pH for lime req.       |                      |                         |
|                                                 | Typical ranges in %          | Bases               |                        | meq/100g                         | ppm (mg/kg)                      | lbs/ac-depth                  | pH <sub>Ca</sub> =   |                         |
| Calcium (Ca)                                    | (55 - 75)                    | 71.4%               | 55.0%                  | 5.5                              | 1100                             | 4730                          | pH <sub>Sikora</sub> |                         |
| Magnesium (Mg)                                  | (15 - 30)                    | 22.1%               | 17.0%                  | 1.7                              | 207                              | 889                           | pH <sub>A-E</sub> =  |                         |
| Sodium (Na)                                     | (0.1 - 5)                    | 2.2%                | 1.7%                   | 0.17                             | 39                               | 168                           |                      |                         |
| Potassium (K)                                   | (2 - 8)                      | 4.5%                | 3.5%                   | 0.35                             | 137                              | 588                           | Texture              |                         |
| Total Bases (Ca + Mg + Na + K) 100.3%           |                              |                     | 7.7                    | 1                                |                                  | Sand%                         |                      |                         |
| ~ Cation Exchange Capacity (CEC)                |                              |                     | 10.0                   | 1                                |                                  | Silt%                         |                      |                         |
| ~ Percent Base Saturatio                        | n (TB/CEC)                   |                     | 77%                    |                                  |                                  |                               | Clay%                |                         |

#### Soil pH and Nutrient Availability




#### **Nutrient Interactions**

- Molybdenum & Nitrogen
- Calcium and Phosphorus
- Calcium = Bad at Relationships ?



#### Plant Health = Direct Relationship with Nutrition

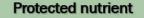


### Not All Fertilizers are Created Equal...

- Salt Index
- Solubility Index
- Nutrient Interactions
- Baggage/Unintended Consequences
- Protected Nutrients



### Manures


How Can They Help?

- Carbon
- Abundant Calcium
- Great Source of P & K
- What is available in 1<sup>st</sup> year?
  - 2% Acetic Acid Test
- What about "salts" ?

| Bulk Density                           | 0.49 g/ml             | 0.41 tons/cu yd     |               |  |
|----------------------------------------|-----------------------|---------------------|---------------|--|
|                                        |                       |                     | Lbs / Ton     |  |
| Analyte                                | 100% Dry Matter Basis | As Received Basis   | (As Received) |  |
| рН                                     |                       | 7.2                 |               |  |
| Electrical Conductivity (dS/m) (1:2)   |                       | 17.8 dS/m (mmhos/cr | n)            |  |
| Dry Matter                             | 100.00 %              | 83.53 %             | 1671          |  |
| Total Carbon                           | 25.4 %                | 21.24 %             | 425           |  |
| Carbon/Nitrogen Ratio (C/N)            | 11.6                  | 11.6                |               |  |
| Total Nitrogen (Combustion)            | 2.04 %                | 1.705 %             | 34.1          |  |
| Total Kjeldahl Nitrogen, %             | 2.20 %                | 1.836 %             | 36.7          |  |
| Nitrate Nitrogen (NO3N)                | 0.01 %                | 0.009 %             | 0.2           |  |
| Ammonium Nitrogen (NH4N)               | 0.22 %                | 0.181 %             | 3.6           |  |
| Total Phosphorus %                     | 0.99 %                | 0.826 %             | 16.5          |  |
| Phosphorus as P2O5, %                  | 2.26 %                | 1.892 %             | 37.8          |  |
| Phosphorus as PO4-P, % (2% acetic Acid | ) 0.65 %              | 0.54 %              | 10.8          |  |
| Phosphorus as P2O5, % (2% acetic Acid) | 1.49 %                | 1.24 %              | 24.8          |  |
| Total Potassium (K)                    | 3.58 %                | 2.990 %             | 59.8          |  |
| Potassium as K2O, %                    | 4.31 %                | 3.600 %             | 72.0          |  |
| Potassium, % (2% acetic Acid)          | 2.86 %                | 2.38 %              | 47.6          |  |
| Potassium as K2O, % (2% acetic Acid)   | 3.44 %                | 2.87 %              | 57.4          |  |
| Total Sulfur                           | 0.76 %                | 0.640 %             | 12.8          |  |
| Sulfur (SO4S) (2% acetic Acid)         | 0.40 %                | 0.34 %              | 6.8           |  |
| Total Calcium                          | 4.03 %                | 3.370 %             | 67.4          |  |
| 2% acetic acid soluble Calcium         | 3.32 %                | 2.77 %              | 55.4          |  |
| Total Magnesium                        | 0.82 %                | 0.690 %             | 13.8          |  |
| Magnesium (Mg) (2% acetic Acid)        | 0.53 %                | 0.44 %              | 8.8           |  |
| Total Sodium                           | 1.29 %                | 1.080 %             | 21.6          |  |
| Sodium (Na) (2% acetic Acid)           | 1.01 %                | 0.84 %              | 16.8          |  |
| Zinc                                   | 491 ppm               | 410.00 ppm          | 0.82          |  |
| Manganese (Mn)                         | 336 ppm               | 281.00 ppm          | 0.56          |  |
| Copper (Cu)                            | 111 ppm               | 93.00 ppm           | 0.19          |  |
| Boron (B)                              | 27 ppm                | 22.00 ppm           | 0.04          |  |

### Carbon Complexing

#### Flavonol Polymer Technology. What does it do?

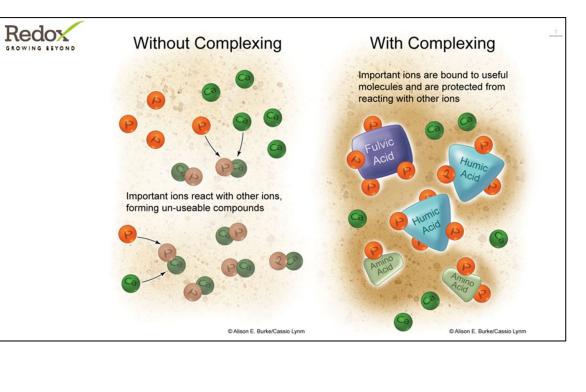




Results in 85-90% efficiency

**Enables slow release** 

Protects from tie-up


Improves mixing

Lower use rates









- Lower Use Rates
- **Greater Efficiencies**
- Humic



For The Soil | For

For the Future





# Biology

- Hormones
- Bio-Stimulants
- POX-C
- Bio-Fungicides
- Microbes
- Polyphenols
- The list goes on!

### Biologicals

How do we make sense of it all?

As a Potato Industry, what do we want to know more about?

How do we <u>Prioritize</u> research?