Lygus feeding on potatoes: Final report on damage symptomology and potential for impact on yield and quality

Tim Waters, Rodney Cooper, Dave Horton and Carrie Wohleb
WA OR Potato Conference 2020
Thursday January 23rd,
8 am 25 minutes
Outline

• Brief Introduction of Lygus
• Species Composition
• Damage Symptoms
• Damage Ratings
• Yield and Quality Impact
Lygus Bugs

- Hemimetabolous
- 5 instars
- Overwinter as adults in crown of plants or other debris
- 3-6 generations/yr
- Native to the Western U.S.
- Very broad host range including flowers, seed, alfalfa, fruits, and potato
Lygus Bugs

- Monitoring done with sweep net, sticky trap or bucket sample
- Economic Threshold (alfalfa seed)
 - 3-5/sweep before seed hardening
 - 15/sweep after seed hardening
- Usually managed w/3 insecticide applications
- **We do not have this type of information on potatoes**
- **Juveniles feed more than adults**
- **Cause damage from feeding and oviposition**
Lygus Feeding

- Lacerate and flush.
- Probe with stylet and macerate plant tissue
- Use proboscis to suck up pre digested plant cells
Aphid or Lygus?

- Slow
- Cornicles
- Filter chamber
- Live birth
- Many species
- Colonies

- Fast
- No cornicles
- 5 black spots on back
- Mostly *L. hesperus* and *L. elisus*
- Loners
Species Composition

• Hypothesis: Lygus species vary by growing location and nearby host crops.
Species Composition

- Collected Lygus from 20 and 15 different sites in 2018 and 2019
- Morphological and a few molecular identifications conducted
Species Composition

2018
• 295 specimens, 20 fields
• 77% *L. hesperus*, 20.5% *L. elisus*, 2.5% *L. robustus*
• 92% of South Basin were *L. hesperus*
• 55% of North Basin were *L. hesperus*

2019
• 386 specimens, 15 fields
• 54% *L. hesperus* and 46% *L. elisus*
• 93% of South Basin were *L. hesperus*
• 86% of North Basin were *L. elisus*
Species Composition

- Mostly *L. hesperus* in South and West
- Mixed assemblage in North (*L. hesperus* and *L. elisus*), but predominantly *L. elisus*
- No difference by potato cultivar
- Surrounding Vegetation?
 - Different crop diversity
- Insecticide sensitivity?
 - Are South fields treated more with insecticides and *L. hesperus* is more tolerant of insecticides?
Damage Symptoms
Oviposition and Feeding Damage
Shortened Nodes
Swollen Nodes
Axillary Buds
Chlorosis and Purpling
Damage Symptoms

• At the WSU Pasco site in 2019, symptoms of Lygus feeding damage were documented on a weekly basis from the middle of June to the end of August.

• Plots scored on a 0-10 scale, where 0 is no feeding damage and 10 is 100% of the plants showing symptoms of Lygus feeding damage.

• Cages that were infested at flowering, tuber initiation, and row closure began exhibit symptoms of Lygus feeding approximately four weeks after the initial infestation.

• Cages infested at early and late tuber bulking began to show symptoms within one week of infestation.
Impact on Yield and Quality

• **Hypothesis:** Lygus cause economic damage to potato crops in the Columbia Basin.

• We evaluated if Lygus impact yield and quality of potatoes grown in the Columbia Basin.
Methods

- **Paterson 2018**
 - Uncaged
 - Caged No Lygus
 - Caged Introduced at flowering (20/ cage 4x)

- **Pasco 2018 and Moxee 2018/19**
 - Caged No Lygus
 - Caged Introduced at flowering (10/ cage 4x)
 - Caged Introduced at tuber bulking (10/cage 3x)

- **Pasco 2019**
 - -Lyg
 - + Lyg Tuber Initiation
 - + Lyg Flowering
 - + Lyg Row Closure
 - +Lyg Early Bulk
 - +Lyg Late Bulk
Yield and Grade

Middle 15 foot of each plot assessed
Paterson, WA

Photo: Tyler Sorensen
Potato quality and yield data from the commercial field plots. Means followed by same letter or symbol do not significantly differ (P=.10, Student-Newman-Keuls).

What would have happened if surrounding field had not senesced?

Commercial potatoes were of higher quality than our research plots...

<table>
<thead>
<tr>
<th>Trt.</th>
<th>Specific Gravity</th>
<th>Fry Col. 0</th>
<th>Fry Col. 1</th>
<th>Fry Col. 2</th>
<th>Fry Col. 3</th>
<th>Fry Col. 4</th>
<th>Ext. Def.</th>
<th>Green Def.</th>
<th>Tot. Def.</th>
<th>Mis-shap</th>
<th>Ton/A</th>
<th>Gross $</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Cage</td>
<td>1.08220a</td>
<td>24.33a</td>
<td>0.50a</td>
<td>0.20a</td>
<td>0.0a</td>
<td>0.0a</td>
<td>1.773a</td>
<td>0.000b</td>
<td>1.867a</td>
<td>10.00a</td>
<td>41.85a</td>
<td>5915a</td>
</tr>
<tr>
<td>Cage - Lyg</td>
<td>1.08341a</td>
<td>23.17a</td>
<td>1.83a</td>
<td>0.0a</td>
<td>0.0a</td>
<td>0.0a</td>
<td>1.583a</td>
<td>0.183b</td>
<td>1.657a</td>
<td>22.33a</td>
<td>32.74b</td>
<td>4566b</td>
</tr>
<tr>
<td>Cage + Lyg</td>
<td>1.07771a</td>
<td>24.50a</td>
<td>0.50a</td>
<td>0.0a</td>
<td>0.0a</td>
<td>0.0a</td>
<td>3.953a</td>
<td>0.483a</td>
<td>3.953a</td>
<td>21.17a</td>
<td>31.80b</td>
<td>4470b</td>
</tr>
</tbody>
</table>
Potato quality and yield data from the USDA Moxee Site. Means followed by same letter or symbol do not significantly differ (P=.10, Student-Newman-Keuls).

This site was planted late and did not receive adequate irrigation.

<table>
<thead>
<tr>
<th>Trt.</th>
<th>Specific Gravity</th>
<th>Fry Col. 0</th>
<th>Fry Col. 1</th>
<th>Fry Col. 2</th>
<th>Fry Col. 3</th>
<th>Fry Col. 4</th>
<th>Ext. Def.</th>
<th>Green</th>
<th>Tot. Def.</th>
<th>Mis-shap</th>
<th>Ton/A</th>
<th>Gross $</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Lyg</td>
<td>1.08853a</td>
<td>6.5a</td>
<td>8.5a</td>
<td>4.0b</td>
<td>3.8a</td>
<td>1.4a</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>30.8a</td>
<td>17.3a</td>
<td>2451a</td>
</tr>
<tr>
<td>+ Lyg Bloom</td>
<td>1.08515a</td>
<td>2.3a</td>
<td>8.8a</td>
<td>9.3a</td>
<td>4.0a</td>
<td>0.4a</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>36.5a</td>
<td>13.8a</td>
<td>1956a</td>
</tr>
<tr>
<td>+ Lyg Bulk</td>
<td>1.07858b</td>
<td>5.3a</td>
<td>7.0a</td>
<td>5.8ab</td>
<td>5.0a</td>
<td>1.4a</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>29.9a</td>
<td>15.0a</td>
<td>2183a</td>
</tr>
</tbody>
</table>
Moxee Site 2019

<table>
<thead>
<tr>
<th>Trt.</th>
<th>Specific Gravity</th>
<th>Fry Col. 0</th>
<th>Fry Col. 1</th>
<th>Fry Col. 2</th>
<th>Fry Col. 3</th>
<th>Fry Col. 4</th>
<th>Ext. Def.</th>
<th>Green</th>
<th>Tot. Def.</th>
<th>Mis-shap</th>
<th>Ton/ A</th>
<th>Gross $</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Lyg</td>
<td>1.0838a</td>
<td>25.0a</td>
<td>0.0a</td>
<td>0.0a</td>
<td>0.0a</td>
<td>2.63a</td>
<td>0.44a</td>
<td>3.73a</td>
<td>12.75a</td>
<td>12.9a</td>
<td>1816a</td>
<td></td>
</tr>
<tr>
<td>+ Lyg Bloom</td>
<td>1.0834a</td>
<td>24.3a</td>
<td>0.7a</td>
<td>0.0a</td>
<td>0.0a</td>
<td>1.55a</td>
<td>0.35a</td>
<td>4.70a</td>
<td>11.88a</td>
<td>17.6a</td>
<td>2490a</td>
<td></td>
</tr>
<tr>
<td>+ Lyg Bulk</td>
<td>1.0803a</td>
<td>24.5a</td>
<td>0.5a</td>
<td>0.0a</td>
<td>0.0a</td>
<td>0.81a</td>
<td>0.07a</td>
<td>3.26a</td>
<td>17.00a</td>
<td>13.6a</td>
<td>1870a</td>
<td></td>
</tr>
</tbody>
</table>

- Potato quality and yield data from the USDA Moxee Site. Means followed by same letter or symbol do not significantly differ (P=.10, Student-Newman-Keuls).
Pasco Site 2018

<table>
<thead>
<tr>
<th>Trt.</th>
<th>Specific Gravity</th>
<th>Fry Col. 0</th>
<th>Fry Col. 1</th>
<th>Fry Col. 2</th>
<th>Fry Col. 3</th>
<th>Fry Col. 4</th>
<th>Ext. Def.</th>
<th>Green</th>
<th>Tot. Def.</th>
<th>Mis- shap</th>
<th>Ton/ A</th>
<th>Gross $</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Lyg</td>
<td>1.0762a</td>
<td>11.25a</td>
<td>11.88a</td>
<td>1.75a</td>
<td>0.1a</td>
<td>0.0a</td>
<td>3.66a</td>
<td>0.87a</td>
<td>3.73a</td>
<td>26.3a</td>
<td>26.1a</td>
<td>3551a</td>
</tr>
<tr>
<td>+ Lyg Bloom</td>
<td>1.0765a</td>
<td>9.88a</td>
<td>10.00a</td>
<td>5.13a</td>
<td>0.0a</td>
<td>0.0a</td>
<td>4.68a</td>
<td>0.23a</td>
<td>4.70a</td>
<td>38.8a</td>
<td>25.8a</td>
<td>3485a</td>
</tr>
<tr>
<td>+ Lyg Bulk</td>
<td>1.0756a</td>
<td>13.38a</td>
<td>8.13a</td>
<td>3.50a</td>
<td>0.0a</td>
<td>0.0a</td>
<td>3.21a</td>
<td>0.57a</td>
<td>3.26a</td>
<td>28.5a</td>
<td>27.2a</td>
<td>3604a</td>
</tr>
</tbody>
</table>

- Potato quality and yield data from the WSU Pasco Site. Means followed by same letter or symbol do not significantly differ (P=.10, Student-Newman-Keuls).
Pasco Site 2019

<table>
<thead>
<tr>
<th>Trt.</th>
<th>Specific Gravity</th>
<th>Fry Col. 0</th>
<th>Fry Col. 1</th>
<th>Fry Col. 2</th>
<th>Fry Col. 3</th>
<th>Fry Col. 4</th>
<th>Ext. Def.</th>
<th>Green</th>
<th>Tot. Def.</th>
<th>Mis-shap</th>
<th>Ton/ A</th>
<th>Gross $</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Lyg</td>
<td>1.0739a</td>
<td>25.00</td>
<td>0.00a</td>
<td>0.0a</td>
<td>0.0a</td>
<td>2.09a</td>
<td>0.48a</td>
<td>2.35a</td>
<td>10.88a</td>
<td>25.39a</td>
<td>3300.a</td>
<td></td>
</tr>
<tr>
<td>+ Lyg Tuber Initiation</td>
<td>1.0744a</td>
<td>24.75a</td>
<td>0.25a</td>
<td>0.0a</td>
<td>0.0a</td>
<td>2.31a</td>
<td>0.40a</td>
<td>2.54a</td>
<td>21.38a</td>
<td>28.58a</td>
<td>3686.a</td>
<td></td>
</tr>
<tr>
<td>+ Lyg Flowering</td>
<td>1.0742a</td>
<td>24.50a</td>
<td>0.50a</td>
<td>0.0a</td>
<td>0.0a</td>
<td>2.84a</td>
<td>1.30a</td>
<td>3.05a</td>
<td>20.25a</td>
<td>30.68a</td>
<td>4040.a</td>
<td></td>
</tr>
<tr>
<td>+ Lyg Row Closure</td>
<td>1.0738a</td>
<td>24.63a</td>
<td>0.38a</td>
<td>0.0a</td>
<td>0.0a</td>
<td>1.74a</td>
<td>0.38a</td>
<td>2.05a</td>
<td>23.63a</td>
<td>31.83a</td>
<td>4093.a</td>
<td></td>
</tr>
<tr>
<td>+Lyg Early Bulk</td>
<td>1.0742a</td>
<td>23.63a</td>
<td>1.38a</td>
<td>0.0a</td>
<td>0.0a</td>
<td>1.52a</td>
<td>0.07a</td>
<td>1.68a</td>
<td>25.00a</td>
<td>31.37a</td>
<td>4045.a</td>
<td></td>
</tr>
<tr>
<td>+Lyg Late Bulk</td>
<td>1.0707a</td>
<td>25.00a</td>
<td>0.00a</td>
<td>0.0a</td>
<td>0.0a</td>
<td>3.64a</td>
<td>0.24a</td>
<td>4.00a</td>
<td>24.00a</td>
<td>25.83a</td>
<td>3260.a</td>
<td></td>
</tr>
</tbody>
</table>

Potato quality and yield data from the WSU Pasco Site. Means followed by same letter or symbol do not significantly differ (P=.10, Student-Newman-Keuls).
Summary

• With the Lygus cage studies, it was apparent that Lygus negatively impact plant health and tuber quality
• There was some variability from one site to another in regard to which factors were most influenced
• Sp. Gravity tends to decrease
• Defects, Malformed and Green Tubers tend to increase
• Further studies hope to better define the impact of Lygus feeding on potato
Acknowledgements

• Tyler Sorensen and Mike Madsen-AgriNorthwest
• Don Kinion, Jennifer Darner, Kala Null, Andrea Vallejo, Cavan Walker, Manuel Chiavara, Maddie Kremme, and John W.-WSU Extension
• Chris Hiles and Chandler Dolezal-LambWeston
• Millie Heidt and Tamera Lewis-USDA Wapato
• Andy Jensen and Matthew Blua
• Funding NW Potato Consortium
Questions?????

Tim Waters, Ph.D.
Professor/
Regional Vegetable Specialist
Washington State University Extension
509 545-3511 Phone
twaters@wsu.edu

WSU Extension programs and employment are available to all without discrimination.
Evidence of noncompliance may be reported through your local Extension Office.